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Abstract— The current study focuses on predicting the
wind speed on short-term weather conditions for maritime
vessels weather station. Several machine learning models were
developed for different forecasting horizons and their
efficiency for this study was evaluated across a number of
metrics. A regression machine learning algorithm was chosen
for sea trials on Lincoln vessels.
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[. INTRODUCTION

The importance of maritime for the world economy is
increasing. Europe is constantly in search for new solutions,
products and services that will enable European industry to
position itself as a key competitor and promote new business
models, in order to create added value to the vessels.

The LINCOLN'! project addresses this paradigm shift
through a holistic perspective, where starting from the design
phase and the new vessels concepts, it takes care of the final
added market value. The LINCOLN project aims to propose
added-value specialized vessels able to run requested
services for Marine Aquaculture, Ocean Energy, Coastal
Monitoring, Control, Surveillance and Rescue sectors in the
most effective, efficient, economical valuable and eco-
friendly way. In particular, innovative vessels are designed
according to lean design tools (such as KbeML — Knowledge
Based Engineering Modelling Language) and methodologies
(such as SBCE — Set Based Concurrent Engineering),
through an integrated IoT (Internet of Things) platform, able
to provide knowledge and future services to the maritime
sector actors. Specifically, the IoT platform consists of a
physical part made of the following dedicated black boxes; i)
the Universal Marine Gateway (UMG) black box for vessel
prototypes and ii) the Marine Gateway (MG) black box for
commercial versions. These black boxes host sensors and are
connected to other vessels systems, such as the on-board
weather station. The data gathered by the sensors are then
collected and sent to a cloud system where they are analyzed
and processed through specific algorithms. The generated
information is published through a web interface to different
users’ categories, like designers, shipbuilders, suppliers and
maintenance companies.

In order to predict changes in weather conditions, there
are several meteorological parameters (such as air pressure
and direction of wind), which can indicate the upcoming
fronts. Specifically, the air pressure strongly influences the
changes in wind speed, temperature and precipitation level.
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In moderate climates, which are observed in Europe, slow
decrease of air pressure indicates that a low-pressure area is
approaching. This brings clouds, precipitation, cold breeze in
the summer time and temperature increase in the winter. In
low pressure areas often high winds and warm air occur that
results in creation of clouds and precipitation. It means that
expected temperatures can be lower, more wind can be
expected, without solar influence.

Wind direction and wind speed are factors with also big
impact on weather, because they affect the surface water.
They can cause higher or lower evaporation of water,
creation of clouds and precipitation [1]. Also, wind direction
and speed determine directions of fronts and how fast they
are coming. For these reasons, this work focuses on the
prediction of wind speed for LINCOLN vessels.

In the case of weather predictions for local weather
conditions, the issue is more challenging than on the country
level [2], [3]. Usually, the area for which the weather
conditions need to be forecasted should be divided into
squares. The smaller the squares, the better. In every square,
some points should be where current parameters of the
atmosphere like temperature, pressure, wind direction and
speed, air humidity, amount of precipitation will be
measured. The rest of the inputs like information about
weather condition outside the area of local measurement,
which are defined as boundary conditions, and information
about fronts, clouds could be downloaded from outside
meteorological stations, weather services, and bigger
organizations, such as the Global Forecast System.

There are 4 main types of common weather forecasts: a)
nowcast — predicts the current state of the weather, b) short-
term — weather conditions are predicted for the next 72 hours
maximum, c) medium-range — weather conditions are
predicted for a period of 3-7 days and d) long-term — weather
conditions are predicted for a period from one week to
months, or even years.

Beside current conditions, the forecast system should also
be supported by historical data about local weather
conditions. The current study focuses on predicting the wind
speed on short-term weather conditions.

II. METHODS

A. Using the causaLens Platform — Automated Machine
Learning for Time-Series Predictions
For the purpose of this work, the causalLens platform [4]
was used to discover a machine learning model that predicts
the wind speed.

This platform automates the process of discovering
prediction models for time-series data. Given historical data
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as input, the platform is capable of autonomously
constructing an optimal prediction model that can
subsequently be integrated in any workflow and deployed on
any machine or device.

In a broad sense, a machine learning model consists of
features extracted from the data, the algorithm and the
parameters of the chosen algorithm. Theoretically, there are
infinite set of models possible for a given dataset, therefore,
researchers and data scientists rely on experience to choose a
model. However, the causalens platform automates this
process and discovers models as fast as a collection of data
scientists working together. The discovery process is
complex and computationally intensive and it is not the
subject of this paper.

For the current study, different models were developed
for different forecasting horizons. In the following sections,
we present results along with the technical specification for
the resulting models developed for wind speed predictions.
The hyper-parameters of each model have been optimized to
provide predictive models with high generalisation
performance. Lastly, a feature selection process has been
incorporated so that to alleviate the problem of over-fitting.
Given the vast number of features that can be considered in a
time series model, robust feature selection methodology is
essential to reduce the variance of the models, and thus avoid
fitting.

The data was split into Training, Validation and Testing
and time-series aware Cross-validation was performed to
ensure robustness of the chosen models.

B. Portweather Prediction Model

In the LINCOLN project some of the major problems
that we had to tackle concerning the weather prediction were
the following:

e the ship had no internet connection to get or send data
like local weather parameters from other sources like
ports etc.

e the machine learning algorithm had to be
implemented using limited memory.

For these two reasons we tested a regression machine
learning algorithm and we named it Portweather, that has
small memory footprint and was able to adaptively and
online learn from data gathered from the weather station that
was on board of the ship. This work is an expansion of our
previous work presented in [2], [3] and for the same data.

Such a machine learning algorithm is the Linear
Regression (LR) with a Stochastic Gradient Descent (SGD)
update of its parameters. When it comes to LR we forecast
wind speed y as a linear function of the following

meteorological parameters Temperature (T) x,, Dew Point
Temperature (DPT) x, , Humidity (H) x,, Wind Direction
(WD) x,, Pressure (PR) x;, Precipitation (PC) x, and Wind
Speed (WS) x, :

(1

m
i — j—
y(x)=a,+ax +..+a,x, = Zajxj ,
j=1
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where x, =1 and the {q, |i=1,...,m} are the parameters of
the linear function.

When it comes to learning the parameters of the LR
model a standard way would be to implement the Gradient
Descent (GD) algorithm where the gradient defined as

VJ(a) = lN(yT—aXT)X, )

where N is the number of training samples x', i =1,..., N,

J(o) = %Z(y(xi)—y" )2 and y',i=1,..,N is the real
i=1
recorded value of the wind speed from the training set.

Using the GD we can often have slow convergence
because each iteration requires calculation of the gradient for
every single training example mapping. Another way to learn
the parameters of the LR is to use the Stochastic Gradient Descent
method where we update the parameters each time by iterating
through each training example making ideal for online learning and
microcontroller use. This way we can get estimates despite the fact
that we’ve done less work by defining the gradient as:

Vd(a), = V(v -a"X,) X,. )

III. DATA USED

A. Corfu Data Set

The data set that we have collected consisted of 15-
minute records of seven parameters: Temperature (T), Dew
Point Temperature (DPT), Humidity (H), Wind Direction
(WD), Pressure (PR), Precipitation (PC) and Wind Speed
(WS). They have been acquired by a local weather station
that was installed by the Corfu Port Authority [5] and most
of its operations are presented through a WebGIS application
[6]. The gathering of the information ranges from January 1,
2017 until March 31, 2017.

B. Data pre-processing

Prior to the use of the two platforms, we had to ensure
that we have high quality data and that our data are in the
right format that is compatible. To do so, a multi-step data
cleaning process has been developed.

C. Time series format

The data should be formatted in a tabular format, where
rows correspond to different entries and columns
corresponds to different features. Each row should contain i)
an indication of the date and the time for the given entry, i.e.,
Year, Month, Day, Hour, Minute, ii) the values of the
features that are used as input to the model, e.g., wind gust,
pressure etc. and iii) the value of target variable used as an
output of the model. The data should be ordered in a strict
chronological order, so we make sure that there are not
duplicated entries in our data.

D. Filling in missing values

Data gaps often appear in climatology time series data. In
our data, extreme numbers were used to indicate that the data



for a given variable were missing. However, different
numbers were used for each variable based on the data type.
To deal with this, we translated all these entries from Not a
Number (NaN) type that is compatible with and recognized
as a format by Python environment.

Filling these missing values is essential, since having a
continuous (without missing values) dataset is prerequisite in
training our weather forecast models. To ensure data
continuity and the generality of our methods, an efficient fill
in the missing values methodology has been deployed,
namely the Drift Method [7]. According to the drift method,
missing values can be filled with estimates, using a simple
forecasting method where the forecast values are equal to the
last known values plus the average change over time (i.e.,
drift) in the historical data. Note that this method is
equivalent to extrapolating into the future by drawing a line
from the first observation to the last one.

E. Data normalisation

In theory, it is not necessary to normalize the numeric
data that are to be used as predictors. In practice, however,
normalizing input variables tends to lead to better predictors
by facilitating a more efficient training process. A change in
a parameter of the model will hence have a greater effect on
the input values that is characterized by larger magnitude. To
assist the development of high performance machine
learning estimators, we perform data standardization for each
feature via mean removal and variance scaling [8].

Following the transformation above, each feature follows
a Gaussian distribution with zero mean and unit variance.
Note that the individual transformation functions for all
features are stored and subsequently used when the model is
run for new data samples.

F. Training and test sets

Evaluating forecast accuracy based on how well the
model fits past historical data is invalid. The accuracy of the
forecasts can only be sufficiently determined by how well the
learning model performs on new instances that have not been
used in the training phase. In the current study, we keep 30%
of the available data for testing. Because of the time
dependency in the data, we preserve the order of the data
during the split, by reserving the 30% most recent
observations as test set, while keeping the first 70% of the
data for training.

IV. RESULTS

A. Causalens Platform

We used the causalens platform to automatically
discover predictive models for different horizons i.e. between
1 hour and 24 hours. The platform evaluated hundreds of
thousands models during the discovery process. The top
performing model was selected on the validation dataset and
not on the training dataset. This ensures that the performance
of our models indicates how well the models have captured
the true underlying structure of the problem. We present the
results for 1 and 24hours forward prediction. The forecasting
accuracy gradually gets reduced while forecasting time
increases.

For each forecasting horizon and each target variable of
interest, a separate model was discovered as the predictors
and the parameters of the model are expected to vary.

In the case of climate predictions, statistical models tend
to perform well on short term horizons. There is a point at
which the performance of a physical model exceeds the
performance of statistical models. This is beyond the scope
of this research.

One-hour prediction

Given that the data was acquired approximately every 15
mins, one-hour prediction represents 4 steps forward
prediction.

The winning model was Ridge Regression (see Table 1
for more details). The true out-of-sample performance is
shown in Figure 1 (a). The model consists of ten features
automatically derived from the original time-series. The top
features or the key drivers were the wind speed itself (2 step
lag and 1 step difference), the pressure (the actual value and
the 2 step lag), the wind gust (median across a window size
of 6 steps or 1.5 hours) and the 2 step lag of the temperature.

Every model was evaluated formally across a number of
metrics. The Median Absolute Error is 0.66, the Mean
Absolute Error equal to 0.97 and the Mean Squared Error
equal to 1.99. All metrics are reported on the true out-of-
sample performance.

Twenty-four-hour prediction

In the case of 24hours data was aggregated to one hour
intervals.

TABLE L FORECASTING HORIZONS USING DIFFERENT
ARCHITECTURES
Forecasting Target Winning Model
Horizon Variable
1 Wind Speed Ridge Regressor
Alpha =0.001
Window Size = 6
Type = Offline
24 Wind Speed Elastic Net Regressor
Alpha=0.001
L1 ratio = 0.1983
Type = Offline

The winning model was an Elastic Net Regressor (see
Table I for details). The true out-of-sample performance is
shown in Figure 1 (b). The model consisting of ten features
automatically derived from the original time-series. The top
features or the key drivers were the wind speed itself (1 step
difference and 1 step lag), the pressure (median value across
a window size 6 and 1 step difference, 3 step lag), humidity
(1 step and 3 step lags) the wind gust (2 step lag), wind
direction (2 step lag) and the 1 step difference of the Heat
Index.

Every model was evaluated formally across a number of
metrics. The Median Absolute Error is 0.90, the Mean
Absolute Error equal to 1.07 and the Mean Squared Error
equal to 2.11. All metrics are reported on the true out-of-
sample performance.

Figure 1 demonstrates that the resulting time series
models that were derived from the platform achieve a high
accuracy at predicting future wind speed in novel situations.
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Fig. 1. Performance of over test data from causalLens platform. Wind
speed predictions for 1 hour and 24 hours ahead (Top and bottom
respectivelly).

B.  Portweather prediction

The Portweather platform [6] could be further expanded
by integrating the proposed prediction module, which is able
to predict the value of the wind speed for the next 1 hour.

- True Wind Speed |
=== 1-Hour, Portweather predicted Wind speed

m/sec

#sample

Fig. 2. Performance of the Portweather algorithm over test data for 1-hour
prediction.

In order to determine the value of the time lag we did a
correlation analysis for the output parameter using the
training data. Figure 2 presents the accuracy of the
Portweather algorithm, which is relatively high and
comparable to the causalens platform. We have

200

implemented all the code using the Python [9] scripting
language.

V. CONCLUSIONS

The aim of this study was to predict the wind speed on
short-term weather conditions for an on-board vessel weather
station. Several machine learning models were developed for
different forecasting horizons and their efficiency for this
study was presented across a number of metrics. A
regression machine learning algorithm was chosen for sea
trials on Lincoln vessels, due to the practical limitations of
the application.

It is important to note that the models presented in this
study did not make use of the testing data. The parameters of
the model were not adjusted using this data and therefore the
results can be interpreted as a proxy for ‘“real-life”
performance. When training data-driven models, we are
interested in obtaining a model with the highest
generalization performance. Good generalization means
good predictive ability over previously-unseen instances. The
generalization ability of a model is indicated by what is
called as true error. The ultimate goal of a learning model is
thus to minimize this true error and attain good
generalization performance. This goal was met in the current
study, by both approaches followed.
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